Electronic properties of oligoacenes from first principles
نویسنده
چکیده
We present the electronic band structures and dielectric tensors for a series of crystalline linear oligoacenes—i.e., naphthalene, anthracene, tetracene, and pentacene—calculated within the density functional framework. The band dispersions, the effective charge carrier masses, and the optical response are discussed as a function of the oligomer length compared to previously reported calculations. The total band dispersions of the two topmost valence and lowest conduction bands are between 0.14 and 0.52 eV, which, however, are strongly anisotropic. Regarding the charge transport properties, the band dispersions are large enough for bandlike transport only along crystalline directions within the herringbone plane. Except for naphthalene, the conduction bands are more dispersive than the valence bands. This indicates that the electron transport is favored compared to hole migration. The revised stable pentacene single-crystal structure exhibits the largest conduction-band dispersions among the series. Consequently the effective electron masses in pentacene are only 0.8m0, whereas the hole masses are in the order of 1.3m0. The electronic and optical gaps and thus the onset of the optical response decrease almost linearly, when going from naphthalene to pentacene.
منابع مشابه
Understanding the structure and electronic properties of molecular crystals under pressure: application of dispersion corrected DFT to oligoacenes.
Oligoacenes form a fundamental class of polycyclic aromatic hydrocarbons (PAH) which have been extensively explored for use as organic (semi) conductors in the bulk phase and thin films. For this reason it is important to understand their electronic properties in the condensed phase. In this investigation, we use density functional theory with Tkatchenko-Scheffler dispersion correction to explo...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملStructure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods
The structure and the electronic properties of single-walled zigzag BN and B3C2N3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. A plane–wave basis set with periodic boundary conditions in conjunction with Vanderbilt ultrasoft pseudo-potential was employed. The energy gap of ZB3C<su...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملStructure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods
The structure and the electronic properties of single-walled zigzag BN and B3C2N3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. A plane–wave basis set with periodic boundary conditions in conjunction with Vanderbilt ultrasoft pseudo-potential was employed. The energy gap of ZB3C<su...
متن کامل